Free download. Book file PDF easily for everyone and every device. You can download and read online On the Motion of the Heart file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with On the Motion of the Heart book. Happy reading On the Motion of the Heart Bookeveryone. Download file Free Book PDF On the Motion of the Heart at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF On the Motion of the Heart Pocket Guide.

So it is also in alarm, and amidst care, and under anxiety of mind; sometimes, too, in fevers, the pulse is rapid, but the respiration is slower than usual. These and other objections of the same kind may be urged against the opinions mentioned. Nor are the views that are entertained of the offices and pulse of the heart, perhaps, less bound up with great and most inextricable difficulties. The heart, it is vulgarly said, is the fountain and workshop of the vital spirits, the centre from which life is dispensed to the several parts of the body.

Yet it is denied that the right ventricle makes spirits, which is rather held to supply nourishment to the lungs. For these reasons it is maintained that fishes are without any right ventricle and indeed every animal wants a right ventricle which is unfurnished with lungs , and that the right ventricle is present solely for the sake of the lungs. Why, I ask, when we see that the structure of both ventricles is almost identical, there being the same apparatus of fibres, and braces, and valves, and vessels, and auricles, and both in the same way in our dissections are found to be filled up with blood similarly black in colour, and coagulated — why, I say, should their uses be imagined to be different, when the action, motion, and pulse of both are the same?

If the three tricuspid valves placed at the entrance into the right ventricle prove obstacles to the reflux of the blood into the vena cava, and if the three semilunar valves which are situated at the commencement of the pulmonary artery be there, that they may prevent the return of the blood into the ventricle; why, when we find similar structures in connexion with the left ventricle, should we deny that they are there for the same end, of preventing here the egress, there the regurgitation, of the blood?

And, when we have these structures, in points of size, form, and situation, almost in every respect the same in the left as in the right ventricle, why should it be said that things are arranged in the former for the egress and regress of spirits, and in the latter or right ventricle, for the blood? The same arrangement cannot be held fitted to favour or impede the motion of the blood and of spirits indifferently.

Top Authors

And when we observe that the passages and vessels are severally in relation to one another in point of size, viz. And as Realdus Columbus says, is it probable that such a quantity of blood should be required for the nutrition of the lungs; the vessel that leads to them, the vena arteriosa or pulmonary artery being of greater capacity than both the iliac veins? And I ask, as the lungs are so close at hand, and in continual motion, and the vessel that supplies them is of such dimensions, what is the use or meaning of this pulse of the right ventricle?

When it is said that the left ventricle draws materials for the formation of spirits, air and blood, from the lungs and right sinuses of the heart, and in like manner sends spirituous blood into the aorta, drawing fuliginous vapours from there, and sending them by the pulmonary vein into the lungs, whence spirits are at the same time obtained for transmission into the aorta, I ask how, and by what means is the separation effected?

And how comes it that spirits and fuliginous vapours can pass hither and thither without admixture or confusion? If the mitral cuspidate valves do not prevent the egress of fuliginous vapours to the lungs, how should they oppose the escape of air? And how should the semiluftars hinder the regress of spirits from the aorta upon each supervening diastole of the heart? Above all, how can they say that the spirituous blood is sent from the pulmonary veins by the left ventricle into the lungs without any obstacle to its passage from the mitral valves, when they have previously asserted that the air entered by the same vessel from the lungs into the left ventricle, and have brought forward these same mitral valves as obstacles to its retrogression?

Good God! Moreover, when they appoint the pulmonary artery, a vessel of great size, with the coverings of an artery, to none but a kind of private and single purpose, that, namely, of nourishing the lungs, why should the pulmonary vein, which is scarcely so large, which has the coats of a vein, and is soft and lax, be presumed to be made for many — three or four different — uses? For they will have it that air passes through this vessel from the lungs into the left ventricle; that fuliginous vapours escape by it from the heart into the lungs; and that a portion of the spirituous blood is distributed to the lungs for their refreshment.

If they will have it that fumes and air — fumes flowing from, air proceeding towards the heart — are transmitted by the same conduit, I reply, that nature is not wont to construct but one vessel, to contrive but one way for such contrary motions and purposes, nor is anything of the kind seen elsewhere. If fumes or fuliginous vapours and air permeate this vessel, as they do the pulmonary bronchia, wherefore do we find neither air nor fuliginous vapours when we divide the pulmonary vein?

Why do we always find this vessel full of sluggish blood, never of air, whilst in the lungs we find abundance of air remaining?

  • Artificial muscles that do the twist?
  • On the Motion of the Heart and Blood in Animals by William Harvey.
  • On the Motion of the Heart and Blood in Animals by William Harvey.

But did the heart either attract air from the lungs, or did the lungs transmit any air to the heart, in the living dog, much more ought this to be the case in the experiment just referred to. Who, indeed, doubts that, did he inflate the lungs of a subject in the dissecting — room, he would instantly see the air making its way by this route, were there actually any such passage for it?

But this office of the pulmonary veins, namely, the ransference of air from the lungs of the heart, is held of such importance, that Hieronymus Fabricius of Aquapendente, contends that the lungs were made for the sake of this vessel, and that it constitutes the principal element in their structure. But I should like to be informed why, if the pulmonary vein were destined for the conveyance of air, it has the structure of a blood — vessel here. Nature had rather need of annular tubes, such as those of the bronchi in order that they might always remain open, and not be liable to collapse; and that they might continue entirely free from blood, lest the liquid should interfere with the passage of the air, as it so obviously does when the lungs labour from being either greatly oppressed or loaded in a less degree with phlegm, as they are when the breathing is performed with a sibilous or rattling noise.

Still less is that opinion to be tolerated which, as a two-fold material, one aerial, one sanguineous, is required for the composition of vital spirits, supposes the blood to ooze through the septum of the heart from the right to the left ventricle by certain hidden porosities, and the air to be attracted from the lungs through the great vessel, the pulmonary vein; and which, consequently, will have it, that there are numerous porosities in the septum of the heart adapted for the transmission of the blood.

But by Hercules! For the septum of the heart is of a denser and more compact structure than any portion of the body, except the bones and sinews. But even supposing that there were foramina or pores in this situation, how could one of the ventricles extract anything from the other — the left, e. Why should we not rather believe that the right took spirits from the left, than that the left obtained blood from the right ventricle through these foramina? But it is certainly mysterious and incongruous that blood should be supposed to be most commodiously drawn through a set of obscure or invisible ducts, and air through perfectly open passages, at one and the same moment.

And why, I ask, is recourse had to secret and invisible porosities, to uncertain and obscure channels, to explain the passage of the blood into the left ventricle, when there is so open a way through the pulmonary veins? I own it has always appeared extraordinary to me that they should have chosen to make, or rather to imagine, a way through the thick, hard, dense, and most compact septum of the heart, rather than take that by the open pulmonary vein, or even through the lax, soft and spongy substance of the lungs at large.

On the Motion of the Heart and Blood in Animals by William Harvey

Besides, if the blood could permeate the substance of the septum, or could be imbibed from the ventricles, what use were there for the coronary artery and vain, branches of which proceed to the septum itself, to supply it with nourishment? And what is especially worthy of notice is this: if in the foetus, where everything is more lax and soft, nature saw herself reduced to the necessity of bringing the blood from the right to the left side of the heart by the foramen ovale, from the vena cava through the pulmonary vein, how should it be likely that in the adult she should pass it so commodiously, and without an effort through the septum of the ventricles which has now become denser by age?

Andreas Laurentius, 1 resting on the authority of Galen 2 and the experience of Hollerius, asserts and proves that the serum and pus in empyema, absorbed from the cavities of the chest into the pulmonary vein may be expelled and got rid of with the urine and feces through the left ventricle of the heart and arteries.

  1. Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios!
  2. Not Safe For Work (NSFW).
  3. A science book a day keeps boredom away!!
  4. He quotes the case of a certain person affected with melancholia, and who suffered from repeated fainting fits, who was relieved from the paroxysms on passing a quantity of turbid, fetid and acrid urine. But he died at last, worn out by disease; and when the body came to be opened after death, no fluid like that he had micturated was discovered either in the bladder or the kidneys; but in the left ventricle of the heart and cavity of the thorax plenty of it was met with.

    And then Laurentius boasts that he had predicted the cause of the symptoms. For my own part, however, I cannot but wonder, since he had divined and predicted that heterogeneous matter could be discharged by the course he indicates, why he could not or would not perceive, and inform us that, in the natural state of things, the blood might be commodiously transferred from the lungs to the left ventricle of the heart by the very same route.

    Stay in touch

    Since, therefore, from the foregoing considerations and many others to the same effect, it is plain that what has heretofore been said concerning the motion and function of the heart and arteries must appear obscure, inconsistent, or even impossible to him who carefully considers the entire subject, it would be proper to look more narrowly into the matter to contemplate the motion of the heart and arteries, not only in man, but in all animals that have hearts; and also, by frequent appeals to vivisection, and much ocular inspection, to investigate and discern the truth.

    When I first gave my mind to vivisections, as a means of discovering the motions and uses of the heart, and sought to discover these from actual inspection, and not from the writings of others, I found the task so truly arduous, so full of difficulties, that I was almost tempted to think, with Fracastorius, that the motion of the heart was only to be comprehended by God. For I could neither rightly perceive at first when the systole and when the diastole took place, nor when and where dilatation and contraction occurred, by reason of the rapidity of the motion, which in many animals is accomplished in the twinkling of an eye, coming and going like a flash of lightning; so that the systole presented itself to me now from this point, now from that; the diastole the same; and then everything was reversed, the motions occurring, as it seemed, variously and confusedly together.

    My mind was therefore greatly unsettled nor did I know what I should myself conclude, nor what believe from others. I was not surprised that Andreas Laurentius should have written that the motion of the heart was as perplexing as the flux and reflux of Euripus had appeared to Aristotle. At length, by using greater and daily diligence and investigation, making frequent inspection of many and various animals, and collating numerous observations, I thought that I had attained to the truth, that I should extricate myself and escape from this labyrinth, and that I had discovered what I so much desired, both the motion and the use of the heart and arteries.

    From that time I have not hesitated to expose my views upon these subjects, not only in private to my friends, but also in public, in my anatomical lectures, after the manner of the Academy of old. These views as usual, pleased some more, others less; some chid and calumniated me, and laid it to me as a crime that I had dared to depart from the precepts and opinions of all anatomists; others desired further explanations of the novelties, which they said were both worthy of consideration, and might perchance be found of signal use.

    • The World, the City, and the Wakemans;
    • The Fashioned Self.
    • The Mermaid and The Toad (Twinkle Tales Book 1);
    • On the Motion of the Heart and Blood in Animals / William Harvey.
    • Navigation menu?
    • On the Motion of the Heart and Blood in Animals / William Harvey.
    • A giant leap for mankind: William Harvey reveals the circulation of the blood.

    At length, yielding to the requests of my friends, that all might be made participators in my labors, and partly moved by the envy of others, who, receiving my views with uncandid minds and understanding them indifferently, have essayed to traduce me publicly, I have moved to commit these things to the press, in order that all may be enabled to form an opinion both of me and my labours. This step I take all the more willingly, seeing that Hieronymus Fabricius of Aquapendente, although he has accurately and learnedly delineated almost every one of the several parts of animals in a special work, has left the heart alone untouched.

    Finally, if any use or benefit to this department of the republic of letters should accrue from my labours, it will, perhaps, be allowed that I have not lived idly, and as the old man in the comedy says:. For never yet hath any one attained To such perfection, but that time, and place, And use, have brought addition to his knowledge; Or made correction, or admonished him, That he was ignorant of much which he Had thought he knew; or led him to reject What he had once esteemed of highest price. So will it, perchance, be found with reference to the heart at this time; or others, at least, starting hence, with the way pointed out to them, advancing under the guidance of a happier genius, may make occasion to proceed more fortunately, and to inquire more accurately.

    In the first place, then, when the chest of a living animal is laid open and the capsule that immediately surrounds the heart is slit up or removed, the organ is seen now to move, now to be at rest; there is a time when it moves, and a time when it is motionless. These things are more obvious in the colder animals, such as toads, frogs, serpents, small fishes, crabs, shrimps, snails, and shell-fish.

    William Harvey

    They also become more distinct in warm-blooded animals, such as the dog and hog, if they be attentively noted when the heart begins to flag, to move more slowly, and, as it were, to die: the movements then become slower and rarer, the pauses longer, by which it is made much more easy to perceive and unravel what the motions really are, and how they are performed.

    In the pause, as in death, the heart is soft, flaccid, exhausted, lying, as it were, at rest. In the motion, and interval in which this is accomplished, three principal circumstances are to be noted:. That the heart is erected, and rises upwards to a point, so that at this time it strikes against the breast and the pulse is felt externally.

    That it is everywhere contracted, but more especially towards the sides so that it looks narrower, relatively longer, more drawn together. The heart of an eel taken out of the body of the animal and placed upon the table or the hand, shows these particulars; but the same things are manifest in the hearts of all small fishes and of those colder animals where the organ is more conical or elongated. The heart being grasped in the hand, is felt to become harder during its action. Now this hardness proceeds from tension, precisely as when the forearm is grasped, its tendons are perceived to become tense and resilient when the fingers are moved.

    It may further be observed in fishes, and the colder blooded animals, such as frogs, serpents, etc. From these particulars it appears evident to me that the motion of the heart consists in a certain universal tension — both contraction in the line of its fibres, and constriction in every sense. It becomes erect, hard, and of diminished size during its action; the motion is plainly of the same nature as that of the muscles when they contract in the line of their sinews and fibres; for the muscles, when in action, acquire vigor and tenseness, and from soft become hard, prominent, and thickened: and in the same manner the heart.

    Motion Trio - Accordion Plus festival ''The Heart''

    We are therefore authorized to conclude that the heart, at the moment of its action, is at once constricted on all sides, rendered thicker in its parietes and smaller in its ventricles, and so made apt to project or expel its charge of blood. This, indeed, is made sufficiently manifest by the preceding fourth observation in which we have seen that the heart, by squeezing out the blood that it contains, becomes paler, and then when it sinks into repose and the ventricle is filled anew with blood, that the deeper crimson colour returns.

    On the Motion of the Heart and Blood in Animals

    But no one need remain in doubt of the fact, for if the ventricle be pierced the blood will be seen to be forcibly projected outwards upon each motion or pulsation when the heart is tense. These things, therefore, happen together or at the same instant: the tension of the heart, the pulse of its apex, which is felt externally by its striking against the chest, the thickening of its parietes, and the forcible expulsion of the blood it contains by the constriction of its ventricles.

    Hence the very opposite of the opinions commonly received appears to be true; inasmuch as it is generally believed that when the heart strikes the breast and the pulse is felt without, the heart is dilated in its ventricles and is filled with blood; but the contrary of this is the fact, and the heart, when it contracts and the impulse of the apex is conveyed through the chest wall , is emptied.

    Whence the motion which is generally regarded as the diastole of the heart, is in truth its systole.